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Abstract

Today’s data centers deploy a variety of middleboxes
(e.g., firewalls, load balancers and SSL offloaders) to
protect, manage and improve the performance of the
applications and services they run. Since existing net-
works provide limited support for middleboxes, admin-
istrators typically overload layer-2 path selection mech-
anisms to coerce traffic through the desired sequences of
middleboxes placed on the network path. These ad-hoc
practices result in a data center network that is hard to
configure, upgrade and maintain, wastes middlebox re-
sources on unwanted traffic, and cannot guarantee mid-
dlebox traversal under network churn.

To address these issues, we propose the policy-aware
switching layer or PLayer, a new layer-2 for data cen-
ters consisting of inter-connected policy-aware switches
or pswitches. Unmodified middleboxes are plugged into
pswitches and are thus off the network path. Based
on policies specified by administrators at a centralized
controller, pswitches explicitly forward different types of
traffic through different sequences of middleboxes. Ex-
periments using our prototype software pswitches sug-
gest that the PLayer is flexible, uses middleboxes effi-
ciently, and ensures the correctness of middlebox traver-
sal under churn.

1 Introduction

In recent years, data centers have rapidly grown to be-
come an integral part of the Internet fabric [9]. These
data centers typically host tens or even thousands of dif-
ferent applications [19], ranging from simple web servers
providing static content to complex e-commerce applica-
tions. To protect, manage and improve the performance
of these applications, data centers deploy a large variety
of middleboxes, including firewalls, load balancers, SSL
offloaders, web caches, and intrusion prevention boxes.

Unfortunately, the process of deploying middleboxes
in today’s data center networks is inflexible and prone
to misconfiguration. While literature on the practical
impact and prevalence of middlebox deployment issues
in current data centers is scant, there is growing evi-
dence of these problems. According to [4], 78% of data

center downtime is caused by misconfiguration. The
sheer number of misconfiguration issues cited by indus-
try manuals [18, 6], reports of large-scale network mis-
configurations [3], and anecdotal evidence from network
equipment vendors and data center architects [13] com-
plete a gloomy picture.

As noted by others in the context of the Inter-
net [37, 34], the key challenge in supporting middle-
boxes in today’s networks is that there are no available
protocols and mechanisms to explicitly insert these mid-
dleboxes on the path between end-points. As a result,
data center administrators deploy middleboxes implic-
itly by placing them in series on the physical path [19].
To make sure that traffic traverses the desired sequence
of middleboxes, administrators must rely on overload-
ing existing path selection mechanisms, such as layer-2
spanning tree construction (used to prevent forwarding
loops). As the complexity and scale of data centers in-
crease, it is becoming harder and harder to rely on these
ad-hoc mechanisms to ensure the following highly desir-
able properties:

(i) Correctness: Traffic should traverse middleboxes
in the sequence specified by the network administra-
tor under all network conditions. Configuring layer-
2 switches and layer-3 routers to enforce the cor-
rect sequence of middleboxes involves tweaking hun-
dreds of knobs, a highly complex and error-prone pro-
cess [4, 18, 31, 22]. Misconfiguration is exacerbated by
the abundance of redundant network paths in a data
center, and the unpredictability of network path selec-
tion under network churn [24, 18]. For example, the
failure or addition of a network link may result in traf-
fic being routed around the network path containing a
mandatory firewall, thus violating data center security
policy.

(ii) Flexibility: The sequences of middleboxes should
be easily (re)configured as application requirements
change. Deploying middleboxes on the physical network
path constrains the data center network. Adding, re-
moving or changing the order of middleboxes traversed
by a particular application’s traffic, i.e., modifying the
logical network topology, requires significant engineer-
ing and configuration changes [19]. For example, adding
an SSL offload box in front of web traffic requires iden-
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tifying or creating a choke point through which all web
traffic passes and manually inserting the SSL offload box
at that location.

(iii) Efficiency: Traffic should not traverse unneces-
sary middleboxes. On-path deployment of middleboxes
forces all traffic flowing on a particular network path to
traverse the same sequence of middleboxes. However,
different applications may have different requirements.
A simple web application may require its inbound traf-
fic to pass through a simple firewall followed by a load
balancer, while an Enterprise Resource Planning (ERP)
application may require that all its traffic be scrubbed
by a dedicated custom firewall and then by an intru-
sion prevention box. By forcing all traffic to traverse
the same middleboxes, the web traffic will unnecessar-
ily waste the resources of the intrusion detection box
and the custom firewall.

In this report, we present the policy-aware switch-
ing layer (or PLayer), a proposal that aims to address
the limitations of today’s data center middlebox de-
ployments. The PLayer is built around two principles:
(i) Separating policy from reachability, and (ii) Taking
middleboxes off the physical network path. It consists
of policy-aware switches, or pswitches, which maintain
the middlebox traversal requirements of all applications
in the form of policy specifications . These pswitches
classify incoming traffic and explicitly redirect them to
appropriate middleboxes, thus guaranteeing middlebox
traversal in the policy-mandated sequence. The low-
latency links in a typical data center network enable
off-path placement of middleboxes with minimal per-
formance sacrifice. Off-path middlebox placement sim-
plifies topology modifications and enables efficient us-
age of existing middleboxes. For example, adding an
SSL offload box in front of HTTPS traffic simply in-
volves plugging in the SSL offload box into a pswitch
and configuring the appropriate HTTPS traffic policy
at a centralized policy controller. The system auto-
matically ensures that the SSL box is only traversed
by HTTPS traffic while the firewall and the load bal-
ancer are shared with HTTP traffic. To ease deploy-
ment in existing data centers, the PLayer aims to sup-
port existing middleboxes and application servers with-
out any modifications, and to minimize changes required
in other network entities like switches.

Separating policy from reachability and centralized
control of networks have been proposed in previous
work [27, 23]. Explicitly redirecting network packets to
pass through off-path middleboxes is based on the well-
known principle of indirection [34, 37, 26]. Our work
combines these two general principles to revise the cur-
rent ad-hoc manner in which middleboxes are deployed
in data centers. Keeping existing middleboxes and
servers unmodified, supporting middleboxes that mod-
ify frames, and guaranteeing middlebox traversal under

all conditions of policy, middlebox and network churn
make the design and implementation of the PLayer a
challenging problem. We have prototyped pswitches in
software using Click [28] and evaluated its functionality
on a small testbed.

1.1 Organization

The rest of this report is organized as follows. In the
next section, we provide an overview of data center
networks and explain the limitations of current mid-
dlebox deployment mechanisms. Section 3 provides an
overview of the PLayer design and its associated chal-
lenges. Sections 4 to 6 present the details of how our
solution addresses these challenges. Section 7 presents
our implementation and evaluation results. Section 8
analyzes PLayer operations using a formal model. Sec-
tion 9 lists the limitations of the PLayer, and Section 10
describes related work. We conclude this report after a
brief discussion of clean slate and stateful designs in
Section 11. Appendix A provides detailed algorithms
explaining how pswitches process frames.

2 Background

In this section, we describe our target environment and
the associated data center network architecture. We
then illustrate the limitations of current best practices
in data center middlebox deployment.

2.1 Data Center Network Architecture

Our target network environment is characterized as fol-
lows:
Scale: The network may consist of tens of thousands
of machines running thousands of applications and ser-
vices.
Middlebox-based Policies: The traffic needs to tra-
verse various middleboxes, such as firewalls, intrusion
prevention boxes, and load balancers before being de-
livered to applications and services.
Low-Latency Links: The network is composed of low-
latency links which facilitate rapid information dissem-
ination and allow for indirection-mechanisms with min-
imal performance overhead.

While both data centers and enterprise networks fit
the above characterization, in this report we focus on
data centers, for brevity.

The physical network topology in a data center is typ-
ically organized as a three layer hierarchy [18], as shown
in Figure 1(a). The access layer provides physical con-
nectivity to the servers in the data centers, while the ag-
gregation layer connects together access layer switches.
Middleboxes are usually deployed at the aggregation
layer to ensure that traffic traverses middleboxes before
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reaching data center applications and services. Multiple
redundant links connect together pairs of switches at all
layers, enabling high availability at the risk of forward-
ing loops. The access layer is implemented at the data
link layer (i.e., layer-2), as clustering, failover and vir-
tual server movement protocols deployed in data centers
require layer-2 adjacency [1, 19].

2.2 Limitations of Current Middlebox

Deployment Mechanisms

In today’s data centers, there is a strong coupling be-
tween the physical network topology and the logical
topology. The logical topology determines the sequences
of middleboxes to be traversed by different types of
application traffic, as specified by data center poli-
cies. Current middlebox deployment practices hard
code these policies into the physical network topology
by placing middleboxes in sequence on the physical net-
work paths and by tweaking path selection mechanisms
like spanning tree construction to send traffic through
these paths. This coupling leads to middlebox deploy-
ments that are hard to configure and fail to achieve the
three properties – correctness, flexibility and efficiency
– described in the previous section. We illustrate these
limitations using the data center network topology in
Figure 1.

2.2.1 Hard to Configure and Ensure Correct-
ness

Reliance on overloading path selection mechanisms to
send traffic through middleboxes makes it hard to en-
sure that traffic traverses the correct sequence of mid-
dleboxes under all network conditions. Suppose we want
traffic between servers S1 and S2 in Figure 1(b) to al-
ways traverse a firewall, so that S1 and S2 are protected
from each other when one of them gets compromised.
Currently, there are three ways to achieve this: (i) Use
the existing aggregation layer firewalls, (ii) Deploy new
standalone firewalls, or (iii) Incorporate firewall func-
tionality into the switches themselves. All three options
are hard to implement and configure, as well as suffer
from many limitations.

The first option of using the existing aggregation layer
firewalls requires all traffic between S1 and S2 to tra-
verse the path (S1, A1, G1, L1, F1, G3, G4, F2, L2,
G2, A2, S2), marked in Figure 1(b). An immediately
obvious problem with this approach is that it wastes re-
sources by causing frames to gratuitously traverse two
firewalls instead of one, and two load-balancers. An
even more important problem is that there is no good
mechanism to enforce this path between S1 and S2. The
following are three widely used mechanisms:

• Remove physical connectivity: By removing links

(A1, G2), (A1, A2), (G1, G2) and (A2, G1), the net-
work administrator can ensure that there is no
physical layer-2 connectivity between S1 and S2 ex-
cept via the desired path. The link (A3, G1) must
also be removed by the administrator or blocked
out by the spanning tree protocol in order to break
forwarding loops. The main drawback of this mech-
anism is that we lose the fault-tolerance property
of the original topology, where traffic from/to S1
can fail over to path (G2, L2, F2, G4) when a mid-
dlebox or a switch on the primary path (e.g., L1
or F1 or G1) fails. Identifying the subset of links
to be removed from the large number of redundant
links in a data center, while simultaneously satisfy-
ing different policies, fault-tolerance requirements,
spanning tree convergence and middlebox failover
configurations, is a very complex and possibly in-
feasible problem.

• Manipulate link costs: Instead of physically remov-
ing links, administrators can coerce the spanning
tree construction algorithm to avoid these links by
assigning them high link costs. This mechanism is
hindered by the difficulty in predicting the behavior
of the spanning tree construction algorithm across
different failure conditions in a complex highly re-
dundant network topology [24, 18]. Similar to iden-
tifying the subset of links to be removed, tweaking
distributed link costs to simultaneously carve out
the different layer-2 paths needed by different pol-
icy, fault-tolerance and traffic engineering require-
ments is hard, if not impossible.

• Separate VLANs: Placing S1 and S2 on sepa-
rate VLANs that are inter-connected only at the
aggregation-layer firewalls ensures that traffic be-
tween them always traverses a firewall. One imme-
diate drawback of this mechanism is that it dis-
allows applications, clustering protocols and vir-
tual server mobility mechanisms requiring layer-2
adjacency [1, 19]. It also forces all applications
on a server to traverse the same middlebox se-
quence, irrespective of policy. Guaranteeing mid-
dlebox traversal requires all desired middleboxes
to be placed at all VLAN inter-connection points.
Similar to the cases of removing links and manipu-
lating link costs, overloading VLAN configuration
to simultaneously satisfy many different middlebox
traversal policies and traffic isolation (the original
purpose of VLANs) requirements is hard.

The second option of using a standalone firewall is
also implemented through the mechanisms described
above, and hence suffer the same limitations. Firewall
traversal can be guaranteed by placing firewalls on ev-
ery possible network path between S1 and S2. How-
ever, this incurs high hardware, power, configuration
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Figure 1: (a) Prevalent 3-layer data center network topology. (b) Layer-2 path between servers S1 and S2 including
a firewall.

and management costs, and also increases the risk of
traffic traversing undesired middleboxes. Apart from
wasting resources, packets traversing an undesired mid-
dlebox can hinder application functionality. For exam-
ple, unforeseen routing changes in the Internet, external
to the data center, may shift traffic to a backup data
center ingress point with an on-path firewall that filters
all non-web traffic, thus crippling other applications.

The third option of incorporating firewall function-
ality into switches is in line with the industry trend
of consolidating more and more middlebox functional-
ity into switches. Currently, only high-end switches [5]
incorporate middlebox functionality and often replace
the sequence of middleboxes and switches at the ag-
gregation layer (for example, F1,L1,G1 and G3). This
option suffers the same limitations as the first two, as it
uses similar mechanisms to coerce S1-S2 traffic through
the high-end aggregation switches incorporating the re-
quired middlebox functionality. Sending S1-S2 traffic
through these switches even when a direct path exists
further strains their resources (already oversubscribed
by multiple access layer switches). They also become
concentrated points of failure. This problem goes away
if all switches in the data center incorporate all the re-
quired middlebox functionality. Though not impossible,
this is impractical from a cost (both hardware and man-
agement) and efficiency perspective.

2.2.2 Network Inflexibility

While data centers are typically well-planned, changes
are unavoidable. For example, to ensure compliance
with future regulation like Sarbanes Oxley, new ac-
counting middleboxes may be needed for email traffic.

The dFence [30] DDOS attack mitigation middlebox is
dynamically deployed on the path of external network
traffic during DDOS attacks. New instances of middle-
boxes are also deployed to handle increased loads, a pos-
sibly more frequent event with the advent of on-demand
instantiated virtual middleboxes.

Adding a new standalone middlebox, whether as
part of a logical topology update or to reduce load
on existing middleboxes, currently requires signifi-
cant re-engineering and configuration changes, physical
rewiring of the backup traffic path(s), shifting of traf-
fic to this path, and finally rewiring the original path.
Plugging in a new middlebox ‘service’ module into a sin-
gle high-end switch is easier. However, it still involves
significant re-engineering and configuration, especially
if all middlebox expansion slots in the switch are filled
up.

Network inflexibility also manifests as fate-sharing be-
tween middleboxes and traffic flow. All traffic on a
particular network path is forced to traverse the same
middlebox sequence, irrespective of policy requirements.
Moreover, the failure of any middlebox instance on the
physical path breaks the traffic flow on that path. This
can be disastrous for the data center if no backup paths
exist, especially when availability is more important
than middlebox traversal.

2.2.3 Inefficient Resource Usage

Ideally, traffic should only traverse the required middle-
boxes, and be load balanced across multiple instances of
the same middlebox type, if available. However, config-
uration inflexibility and on-path middlebox placement
make it difficult to achieve these goals using existing
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middlebox deployment mechanisms. Suppose, spanning
tree construction blocks out the (G4, F2, L2, G2) path
in Figure 1(b). All traffic entering the data center, ir-
respective of policy, flows through the remaining path
(G3, F1, L1, G1), forcing middleboxes F1 and L1 to pro-
cess unnecessary traffic and waste their resources. More-
over, middleboxes F2 and L2 on the blocked out path
remain unutilized even when F1 and L1 are struggling
with overload.

3 Design Overview

The policy-aware switching layer (PLayer) is a data cen-
ter middlebox deployment proposal that aims to address
the limitations of current approaches, described in the
previous section. The PLayer achieves its goals by ad-
hering to the following two design principles:

1. Separating policy from reachability.

The sequence of middleboxes traversed by applica-
tion traffic is explicitly dictated by data center pol-
icy, and not implicitly by network path selection
mechanisms like layer-2 spanning tree construction
and layer-3 routing.

2. Taking middleboxes off the physical network path.

Rather than placing middleboxes on the physical
network path at choke points in the network, mid-
dleboxes are plugged in off the physical network
data path and traffic is explicitly forwarded to
them.

Explicitly redirecting traffic through off-path middle-
boxes is based on the well-known principle of indirec-
tion [34, 37, 26]. A data center network is a more apt
environment for indirection than the wide area Internet
due to its very low inter-node latencies.

The PLayer consists of enhanced layer-2 switches
called policy-aware switches or pswitches. Unmodified
middleboxes are plugged into a pswitch just like servers
are plugged into a regular layer-2 switch. However, un-
like regular layer-2 switches, pswitches forward frames
according to the policies specified by the network ad-
ministrator.

Policies define the sequence of middleboxes to be tra-
versed by different traffic. A policy is of the form:
[Start Location, Traffic Selector]→Sequence. The left
hand side defines the applicable traffic – frames with
5-tuples (i.e., source and destination IP addresses and
port numbers, and protocol type) matching the Traf-
fic Selector arriving from the Start Location. The right
hand side specifies the sequence of middlebox types (not
instances) to be traversed by this traffic 1 . We use frame

1Middlebox interface information can also be incorporated into
a policy. For example, frames from an external client to an inter-

5-tuple to refer to the 5-tuple of the packet within the
frame.

Policies are automatically translated by the PLayer
into rules that are stored at pswitches in rule tables.
A rule is of the form [Previous Hop, Traffic Selector] :
Next Hop. Each rule determines the middlebox or server
to which traffic of a particular type, arriving from the
specified previous hop, should be forwarded next. Upon
receiving a frame, the pswitch matches it to a rule in
its table, if any, and then forwards it to the next hop
specified by the matching rule.

The PLayer relies on centralized policy and middle-
box controllers to set up and maintain the rule tables at
the various pswitches. Network administrators specify
policies at the policy controller, which then reliably dis-
seminates them to each pswitch. The centralized mid-
dlebox controller monitors the liveness of middleboxes
and informs pswitches about the addition or failure of
middleboxes.

Figure 2: A simple PLayer consisting of only one
pswitch.

To better understand how the PLayer works, we
present three examples of increasing complexity that
demonstrate its key functionality. In practice, the
PLayer consists of multiple pswitches inter-connected
together in complex topologies. For example, in the
data center topology discussed previously, pswitches
would replace layer-2 switches. However, for ease of
exposition, we start with a simple example containing
only a single pswitch.

Figure 3: A simplified snippet of the data center topol-
ogy in Figure 1, highlighting the on-path middlebox
placement.

Figure 2 shows how the PLayer implements the policy
induced by the physical topology in Figure 3, where all
frames entering the data center are required to traverse
a firewall and then a load balancer before reaching the

nal server must enter a firewall via its red interface, while frames
in the reverse direction should enter through the green interface.
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servers. When the pswitch receives a frame, it performs
the following three operations:

1. Identify the previous hop traversed by the frame.

2. Determine the next hop to be traversed by the
frame.

3. Forward the frame to its next hop.

The pswitch identifies frames arriving from the core
router and the load balancer based on their source MAC
addresses (R and L, respectively). Since the firewall
does not modify the MAC addresses of frames passing
through it, the pswitch identifies frames coming from
it based on the ingress interface (IfaceF) they arrive
on. The pswitch determines the next hop for the frame
by matching its previous hop information and 5-tuple
against the rules in the rule table. In this example, the
policy translates into the following three rules:

1. [R, ∗] : F

2. [IfaceF, ∗] : L

3. [L, ∗] : FinalDest

The first rule specifies that every frame entering the
data center (i.e., every frame arriving from core router
R) should be forwarded to the firewall (F). The second
rule specifies that every frame arriving from the firewall
should be forwarded to the load balancer (L). The third
rule specifies that frames arriving from the load balancer
should be sent to the final destination, i.e., the server
identified by the frame’s destination MAC address. The
pswitch forwards the frame to the next hop determined
by the matching rule, encapsulated in a frame explic-
itly addressed to the next hop. It is easy to see that the
pswitch correctly implements the original policy through
these rules, i.e., every incoming frame traverses the fire-
wall followed by the load balancer.

Multiple equivalent instances of middleboxes are of-
ten deployed for scalability and fault-tolerance. Figure 4
shows how the PLayer can load balance incoming traf-
fic across two equivalent firewalls, F1 and F2. The first
rule in the table specifies that incoming frames can be
sent either to firewall F1 or to firewall F2. Since the
firewall maintains per-flow state, the pswitch uses a flow-
direction-agnostic consistent hash on a frame’s 5-tuple
to select the same firewall instance for all frames in both
forward and reverse directions of a flow.

The more complex example in Figure 5 illustrates how
the PLayer supports different policies for different appli-
cations and how forwarding load is spread across multi-
ple pswitches. Web traffic has the same policy as before,
while Enterprise Resource Planning (ERP) traffic is to
be scrubbed by a dedicated custom firewall (W ) fol-
lowed by an Intrusion Prevention Box (IPB). The mid-
dleboxes are distributed across the two pswitches A and

Figure 4: Load balancing traffic across two equivalent
middlebox instances.

B. The rule table at each pswitch has rules that match
frames coming from the entities connected to it. For
example, rules at pswitch A match frames coming from
middleboxes F1 and L, and the core router R. For
sake of simplicity, we assume that all frames with TCP
port 80 are part of web traffic and all others are part
of ERP traffic. A frame (say, an ERP frame) enter-
ing the data center first reaches pswitch A. Pswitch A
looks up the most specific rule for the frame ([R, ∗] : W )
and forwards it to the next hop (W ). The PLayer uses
existing layer-2 mechanisms (e.g., spanning tree based
Ethernet forwarding) to forward the frame to its next
hop, instead of inventing a new forwarding mechanism.
Pswitch B receives the frame after it is processed by
W . It looks up the most specific rule from its rule table
([IfaceW, ∗] : IPB) and forwards the frame to the next
hop (IPB). An HTTP frame entering the data center
matches different rules and thus follows a different path.

Figure 5: Different policies for web and ERP applica-
tions.

The three examples discussed in this section provide
a high level illustration of how the PLayer achieves
the three desirable properties of correctness, flexibility
and efficiency. The explicit separation between policy
and the physical network topology simplifies configura-
tion. The desired logical topologies can be easily imple-
mented by specifying appropriate policies at the central-
ized policy controller, without tweaking spanning tree
link costs and IP gateway settings distributed across
various switches and servers. By explicitly redirecting
frames only through the middleboxes specified by pol-
icy, the PLayer guarantees that middleboxes are nei-
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ther skipped nor unnecessarily traversed. Placing mid-
dleboxes off the physical network path prevents large
scale traffic shifts on middlebox failures and ensures that
middlebox resources are not wasted serving unnecessary
traffic or get stuck on inactive network paths.

The PLayer operates at layer-2 since data centers are
pre-dominantly layer-2 [19]. It re-uses existing tried and
tested layer-2 mechanisms to forward packets between
two points in the network rather than inventing a cus-
tom forwarding mechanism. Furthermore, since mid-
dleboxes like firewalls are often not explicitly address-
able, the PLayer relies on simple layer-2 mechanisms
described in Section 4.2.3 to forward frames to these
middleboxes, rather than more heavy-weight layer-3 or
higher mechanisms.

In the next three sections, we discuss how the PLayer
addresses the three main challenges listed below:
(i) Minimal Infrastructure Changes: Support ex-
isting middleboxes and servers without any modifica-
tions and minimize changes to network infrastructure
like switches.
(ii) Non-transparent Middleboxes : Handle mid-
dleboxes that modify frames while specifying policies
and while ensuring that all frames in both forward and
reverse directions of a flow traverse the same middlebox
instances.
(iii) Correct Traversal Under Churn : Guarantee
correct middlebox traversal during middlebox churn and
conflicting policy updates.

4 Minimal Infrastructure

Changes

Minimizing changes to existing network forwarding in-
frastructure and supporting unmodified middleboxes
and servers is crucial for PLayer adoption in current
data centers. In addition to describing how we meet this
challenge, in this section, we also explain a pswitch’s in-
ternal structure and operations, and thus set the stage
for describing how we solve other challenges in subse-
quent sections.

4.1 Forwarding Infrastructure

The modular design of pswitches, reliance on stan-
dard data center path selection mechanisms to forward
frames, and encapsulation of forwarded frames in new
Ethernet-II frames help meet the challenge of minimiz-
ing changes to the existing data center network forward-
ing infrastructure.

4.1.1 Pswitch Design & Standard Forwarding

Figure 6 shows the internal structure of a pswitch with
N interfaces. For ease of explanation, each physical

interface is shown to comprise of two separate logical
interfaces – an input interface and an output interface.
A pswitch consists of two independent parts – the Switch
Core and the Policy Core, described below:

Figure 6: Internal components of a pswitch.

1. Switch Core

The Switch Core provides the forwarding function-
ality of a standard Ethernet switch. It forwards
Ethernet frames received at its interfaces based on
their destination MAC addresses. If the destina-
tion MAC address of a frame received at a inter-
face, say X, was previously learned by the Switch
Core, then the frame is forwarded only on the in-
terface associated with the learned MAC address.
Else, the frame is flooded on all Switch Core inter-
faces other than X. The Switch Core coordinates
with Switch Cores in other pswitches through ex-
isting protocols like the Spanning Tree Protocol to
construct a loop-free forwarding topology.

2. Policy Core

The Policy Core redirects frames 2 to the middle-
boxes dictated by policy. It consists of multiple
modules: The RuleTable stores the rules used
for matching and forwarding frames. Each pswitch
interface has an inP, an outP and a FailDetect

module associated with it. An inP module pro-
cesses a frame as it enters a pswitch interface – it
identifies the frame’s previous hop, looks up the
matching rule and emits it out to the correspond-
ing Switch Core interface for regular forwarding
to the next hop specified by the rule. An outP

module processes a frame as it exits a pswitch in-
terface, decapsulating or dropping it as explained
later in the section. The FailDetect module of a
pswitch interface monitors the liveness of the con-
nected middlebox (if any) using standard mecha-
nisms like ICMP pings, layer-7 content snooping,

2Only frames containing IP packets are considered. Non-IP
frames like ARP requests are forwarded by the Switch Core as in
regular Ethernet switches.
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SNMP polling, TCP health checks, and reports to
the middlebox controller.

The Switch Core appears like a regular Ethernet
switch to the Policy Core, while the Policy Core appears
like a multi-interface device to the Switch Core. This
clean separation allows us to re-use existing Ethernet
switch functionality in constructing a pswitch with min-
imal changes, thus simplifying deployment. The Switch
Core can also be easily replaced with an existing non-
Ethernet forwarding mechanism, if required by the ex-
isting data center network infrastructure.

4.1.2 Encapsulation

A frame redirected by the Policy Core is encapsulated
in a new Ethernet-II frame, identified by a new Ether-
Type code from the IEEE EtherType Field Registra-
tion Authority [7], as shown in Figure 7. The outer
frame’s destination MAC address is set to that of the
next hop middlebox or server, and the source MAC is
set to that of the original frame (or of the last middlebox
instance traversed, if any) in order to enable MAC ad-
dress learning by Switch Cores. An encapsulated frame
also includes a 1-byte Info field that tracks the version
number of the policy used to redirect it.

Figure 7: Cisco ISL [8] style frame encapsulation.

We encapsulate, rather than overwrite the original
frame headers, as preserving the MAC addresses of the
original frame is often required for correctness. For ex-
ample, firewalls may filter based on source MAC ad-
dresses , and load-balancers set the destination MAC
address to that of a server chosen based on dynamic
load conditions. Although the 15-byte encapsulation
overhead may increase frame size beyond the 1500 byte
MTU, an encapsulated frame is below the size limit ac-
cepted by most layer-2 switches. For example, Cisco
switches allow 1600 byte ‘baby giants’.

4.1.3 Incremental Deployment

Incorporating the PLayer into an existing data center
does not require a fork-lift upgrade of the entire net-
work. Only switches which connect to the external
network and those into which servers requiring mid-
dlebox traversal guarantees are plugged in, need to
be converted to pswitches. Other switches need not
be converted if they can be configured or modified
to treat encapsulated frames with the new EtherType
as regular Ethernet frames. Middleboxes can also be
plugged into a regular switch. However, transparent

middleboxes must be accompanied by the inline Src-

MacRewriter device (described in Section 4.2.2). If
the data center contains backup switches and redun-
dant paths, pswitches can be smoothly introduced with-
out network downtime by first converting the backup
switches to pswitches.

4.2 Unmodified Middleboxes and

Servers

Pswitches address the challenge of supporting unmod-
ified middleboxes and servers in three ways – (i) En-
sure that only relevant frames in standard Ethernet for-
mat reach middleboxes and servers, (ii) Use only non-
intrusive techniques to identify a frame’s previous hop,
and (iii) Support varied middlebox addressing require-
ments.

4.2.1 Frames reaching Middleboxes and
Servers

The outP module of a pswitch interface directly con-
nected to a middlebox or server emits out a unicast
frame only if it is MAC addressed to the connected mid-
dlebox or server. Dropping other frames, which may
have reached the pswitch through standard Ethernet
broadcast forwarding, avoids undesirable middlebox be-
havior (e.g., a firewall can terminate a flow by sending
TCP RSTs if it receives an unexpected frame). The
outP module also decapsulates the frames it emits and
thus the middlebox or server receives standard Ethernet
frames it can understand.

4.2.2 Previous Hop Identification

A pswitch does not rely on explicit middlebox support
or modifications for identifying a frame’s previous hop,
The previous hop of a frame can be identified in three
possible ways:

1. source MAC address if the previous hop is a mid-
dlebox that changes the source MAC address,

2. pswitch interface on which the frame arrives if the
middlebox is directly attached to the pswitch, or

3. VLAN tag if the data center network has been di-
vided into different functional zones using VLANs
(i.e., external webservers, firewalls, etc.).

If none of the above three conditions hold (for ex-
ample, in a partial pswitch deployment where mid-
dleboxes are plugged into regular Ethernet switches),
then we install a simple stateless in-line device, Sr-

cMacRewriter, in between the middlebox and the
regular Ethernet switch to which it is connected. Sr-

cMacRewriter inserts a special source MAC address
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that can uniquely identify the middlebox into frames
emitted by the middlebox, as in option 1 above.

The previous hop identification options described
above make the following two assumptions:

1. Middleboxes and servers of interest are all part of
the same layer-2 network, as in common data cen-
ter deployments today. Middleboxes in a different
layer-2 network cannot be identified as the connect-
ing routers overwrite the source MAC address of
frames.

2. The data center network is secure enough to pre-
vent source MAC address and VLAN spoofing.

4.2.3 Middlebox Addressing

Many middleboxes like firewalls transparently operate
inline with traffic and do not require traffic to be explic-
itly addressed to them at layer-2 or layer-3. Moreover,
for many such middleboxes, traffic cannot be explicitly
addressed to them, as they lack a MAC address. We
solve this problem by assigning a fake MAC address to
such a middlebox instance when it is registered with the
middlebox controller. The fake MAC address is used as
the destination MAC of encapsulated frames forwarded
to it. If the middlebox is directly connected to a pswitch,
the pswitch also fills in this MAC address in the source
MAC field of encapsulated frames forwarded to the next
hop. If it is not directly attached to a pswitch, this
MAC address is used by the SrcMacRewriter ele-
ment described in the previous section. In all cases, the
middlebox remains unmodified.

In contrast, some middleboxes like load balancers of-
ten require traffic to be explicitly addressed to them
at layer-2, layer-3 or both. The characteristics of each
middlebox type are obtained from technical specifica-
tions or through empirical testing. We support middle-
boxes that require layer-3 addressing using per-segment
policies to be described in Section 5. We support mid-
dleboxes that require layer-2 addressing by having the
outP module rewrite the destination MAC address of
a frame to the required value before emitting it out to
such a middlebox.

5 Non-Transparent Middleboxes

Non-transparent middleboxes, i.e., middleboxes that
modify frame headers or content (for e.g., load bal-
ancers), make end-to-end policy specification and con-
sistent middlebox instance selection challenging. By us-
ing per-segment policies, we support non-transparent
middleboxes in policy specification. By enhancing pol-
icy specifications with hints that indicate which frame
header fields are left untouched by non-transparent mid-
dleboxes, we enable the middlebox instance selection

mechanism at a pswitch to select the same middlebox
instances for all packets in both forward and reverse di-
rections of a flow, as required by stateful middleboxes
like firewalls and load balancers.

Middleboxes may modify frames reaching them in dif-
ferent ways. MAC-address modification aids previous
hop identification but does not affect traffic classifica-
tion or middlebox instance selection since they are inde-
pendent of layer-2 headers. Similarly, payload modifi-
cation does not affect policy specification or middlebox
instance selection, unless deep packet inspection is used
for traffic classification. Traffic classification and flow
identification mainly rely on a frame’s 5-tuple. Middle-
boxes that fragment frames do not affect policy speci-
fication or middlebox instance selection as long as the
frame 5-tuple is the same for all fragments. In the re-
mainder of this section, we describe how we support
middleboxes that modify frame 5-tuples. We also pro-
vide the details of our basic middlebox instance se-
lection mechanism in order to provide the context for
how non-transparent middleboxes and middlebox churn
(Section 6.3) affect it.

5.1 Policy Specification

Middleboxes that modify frame 5-tuples are supported
in policy specification by using per-segment policies. We
define the bi-directional end-to-end traffic between two
nodes, e.g., A and B, as a flow. Figure 8 depicts a flow
passing through a firewall unmodified, and then a load
balancer that rewrites the destination IP address IPB

to the address IPW of an available web server. Frame
modifications by the load balancer preclude the use of
a single concise Selector. Per-segment policies 1 and 2
shown in Figure 8, each matching frames during a por-
tion of its end-to-end flow, together define the complete
policy. Per-segment policies also enable the definition of
policies that include middleboxes which require traffic
to be explicitly addressed to them at the IP layer.

Figure 8: Policies for different segments of the logical
middlebox sequence traversed by traffic between A and
B.
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5.2 Middlebox Instance Selection

The basic middlebox instance selection mechanism uses
consistent hashing to select the same middlebox in-
stance for all frames in both forward and reverse di-
rections of a flow. A frame’s 5-tuple identifies the flow
to which it belongs. A hash value h is calculated over
the frame’s 5-tuple, taking care to ensure that it is flow
direction agnostic, i.e., source and destination fields in
the 5-tuple are not distinguished in the calculation of h.
The ids 3 of all live instances of the specified middlebox
type are arranged in a ring as shown in Figure 9, and the
instance whose id is closest to h in the counter-clockwise
direction is selected [35].

Figure 9: Choosing a middlebox instance for a flow from
among 4 instances M1 − M4 using consistent hashing.

5.3 Policy Hints for Middlebox Instance

Selection

We first consider the case where middleboxes do not
change all the fields of the 5-tuple. Based on middle-
box semantics and functionality, network administrators
indicate the frame 5-tuple fields to be used in middle-
box instance selection along with the policy. For mid-
dleboxes that do not modify frames, the entire frame
5-tuple is used to identify a flow and select the mid-
dlebox instance for it, as described in the previous sec-
tion. When middleboxes modify the frame 5-tuple, in-
stance selection can no longer be based on the entire
5-tuple. For example, in the A→B flow direction in
Figure 8, the load balancer instance is selected when
the frame 5-tuple is (IPA, IPB , P ortA, P ortB , tcp). On
the B→A reverse direction, the load balancer in-
stance is to be selected when the frame 5-tuple is
(IPW , IPA, P ortB , P ortA, tcp). The policy hints that
a load balancer instance should be selected only based
on frame 5-tuple fields unmodified by the load balancer,
viz., IPA, PortA, PortB and tcp (although source and
destination fields are interchanged).

3Middlebox instance ids are randomly assigned by the mid-
dlebox controller when the network administrator registers the
instance.

Next, we consider the case where a middlebox changes
all the fields of the 5-tuple. Here, we assume that the
middlebox always changes the frame’s source IP address
to its own IP address, so that regular layer-3 routing
can be used to ensure that reverse traffic reaches the
same middlebox instance. In practice, we are not aware
of any middleboxes that violate this assumption. How-
ever, for the sake of completeness, we discuss below how
pswitches can be enhanced with per-flow state to sup-
port these middleboxes, if they exist.

A regular pswitch, i.e., a stateless pswitch, is enhanced
with two hash tables, FwdTable and RevTable, to
create a stateful pswitch. The FwdTable and the
RevTable record the next hop of a flow indexed by
its complete 5-tuple and previous hop. The inP mod-
ule of the pswitch records the middlebox instance se-
lected while processing the first frame of a flow in the
FwdTable. While processing a frame that is to be
emitted out to a directly attached middlebox/server,
the outP module of the pswitch records the previous
hop traversed by the frame as the next hop for frames
in the reverse flow direction, in the RevTable. The
inP uses the RevTable entry if both FwdTable and
rule lookup yield no matches, thus providing a default
reverse path containing the same middlebox instances
as in the forward path. Please see Appendix A for more
details.

6 Guarantees under Churn

In this section, we argue that the PLayer guarantees cor-
rect middlebox traversal under different kinds of churn
– network, policy and middlebox churn. Section 8
presents a formal analysis of PLayer operations and
churn guarantees.

6.1 Network Churn

The failure or addition of pswitches and links consti-
tute network churn. The separation between policy and
reachability in the PLayer ensures that network churn
does not cause policy violations. Every pswitch has a
copy of the rules encoding the middleboxes to be tra-
versed by different traffic, and forwarding of frames is
solely done based on these rules. Although frames for-
warded to middleboxes or servers rendered unreachable
by pswitch or link failures may be dropped, a middlebox
will never be bypassed.

Network partitions caused by link or pswitch failures
concurrent with policy or middlebox churn can lead to
inconsistencies in the policy and middlebox information
established at different pswitches. We address this prob-
lem by employing a 2-stage, versioned policy and mid-
dlebox information dissemination mechanism, described
later in this section.
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6.2 Policy Churn

Network administrators update policies at a centralized
policy controller when the logical topology of the data
center network needs to be changed. In this section,
we first briefly describe our policy dissemination mech-
anism. We then discuss possible middlebox traversal
violations and how we successfully prevent them.

6.2.1 Policy Dissemination

The policy controller reliably disseminates policy infor-
mation over separate TCP connections to each pswitch.
If this step fails due to a network partition between the
policy controller and some pswitch, then the update is
canceled and the administrator is notified. After all
pswitches have received the complete policy informa-
tion, the policy controller sends a signal that triggers
each pswitch to adopt the latest update. The signal,
which is conveyed in a single packet, has a better chance
of synchronously reaching the different pswitches than
the multiple packets carrying the policy information.
Similar to network map dissemination [29], the policy
version number recorded inside encapsulated frames is
used to further improve synchronization – a pswitch that
has not yet adopted the latest policy update will imme-
diately adopt it upon receiving a frame stamped with
the latest policy version number. This also makes the
dissemination process robust to transient network par-
titions that cause the trigger signal to be lost.

Policy dissemination over separate TCP connections
to each pswitch scales well if the number of pswitches
in the data center is small (a few 100s), assuming in-
frequent policy updates (a few times a week). If the
number of pswitches is very large, then the distributed
reliable broadcast mechanism suggested by RCP [21]
is used for policy dissemination – The policy con-
troller sends policy updates over TCP connections to
the pswitches directly connected to it. These pswitches
in turn send the policy information over separate TCP
connections to each of the pswitches directly connected
to them, and so on.

6.2.2 Policy Violations

Frames may be forwarded to middleboxes in an incor-
rect order that violates policy during policy churn, even
if policy dissemination is perfectly synchronized. In this
section, we illustrate potential violations using some ex-
ample topologies. In the next section, we describe how
we use intermediate middlebox types to prevent these
violations.

Consider the topology shown in Figure 10. Policy
version 1 specifies that all traffic entering the data cen-
ter should first traverse a load balancer followed by a
firewall. Policy version 2 reverses the order of middle-
boxes specified in policy version 1, i.e., traffic should

Figure 10: Network topology to illustrate policy viola-
tions during policy churn. Rule tables correspond to
Scenario A.

first traverse a firewall and then a load balancer. Sce-
narios A and B, described below, demonstrate how the
lack of perfect time synchronization of policy updates
across different pswitches causes policy violations. Sce-
nario C demonstrates how our support for unmodified
middleboxes causes policy violations even with perfect
time synchronization of policy updates.

• Scenario A

Pswitch P is at policy version 1; pswitch Q is at
policy version 2, as captured by the rule tables in
Figure 10. A frame arriving at pswitch P from out-
side the data center will be forwarded to the load
balancer L, as per policy version 1. When pswitch
Q receives the frame after processing by L, it for-
wards it to the final destination, as per policy ver-
sion 2. The frame does not traverse the firewall,
thus violating data center security policy. To avoid
this violation, pswitch Q drops the frame without
handing it to L, as the policy version number em-
bedded in it (1) is less than Q’s current policy ver-
sion number (2).

• Scenario B

Pswitch P is at policy version 2; pswitch Q is at pol-
icy version 1. A frame arriving at pswitch P from
outside the data center will be forwarded to the fire-
wall F , as per policy version 2. When pswitch Q
receives the frame after processing by F , it forwards
it to the final destination, as per policy version 1.
Although a potentially less crucial middlebox, L,
is bypassed in this scenario, the policy violation
may still be unacceptable (for example, if L were
an intrusion prevention middlebox). To avoid the
violation, pswitch Q updates its current policy (1)
to the latest version embedded in the frame (2), be-
fore handing it off to F . Now when it receives the
frame after processing by F , it correctly forwards
it to L, as per policy version 2. If pswitch Q had
not completely received policy version 2 through
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the dissemination mechanism before receiving the
frame, then it is dropped and not sent to F .

This mechanism to prevent policy violation will not
work if the red and green interfaces of F are con-
nected to two different pswitches Q and T , as shown
in Figure 11. This is because only pswitch Q up-
dates to policy version 2 on seeing the frame with
version 2. Pswitch T , which receives the frame af-
ter processing by F , may remain at policy version
1 and thus incorrectly forwards it to the final des-
tination, bypassing L.

Figure 11: Policy violation during churn when the
two interfaces of a firewall are connected to different
pswitches.

• Scenario C

Pswitches P and Q are both at policy version 1. A
frame arriving at P from outside the data center
is forwarded to L, as per policy version 1. While
the frame is being processed by L, pswitches P and
Q both adopt policy version 2 at exactly the same
time instant. When the frame arrives at Q after
processing by L, it is forwarded to the final desti-
nation based on policy 2, bypassing the firewall as
in Scenario A. Thus, even perfect synchronization
of policy updates will not prevent policy violations.

Irrespective of the policy violations described above,
frames will never become stuck in a forwarding loop.
Loops in policy specifications are detected and pre-
vented by static analysis during the specification phase
itself. The policy version number stamped in frames
ensures that each pswitch processing a frame uses the
latest policy version.

Our mechanisms to prevent policy violations during
churn are greatly limited by our support for existing
unmodified middleboxes. Unmodified middleboxes do
not preserve the policy version numbers associated with
frames they process. If they did (for example, using
annotations like in [25]), we can use the policy version
number embedded in a frame to ensure that it is for-
warded only based on a single policy during its lifetime.
Since middleboxes may drop frames or generate new

ones, counting the number of frames sent to a middle-
box cannot be used to infer the policy version associ-
ated with frames output by it. In the next section, we
describe how intermediate middlebox types are used to
prevent policy violations.

6.2.3 Intermediate Middlebox Types

Specifying conflicting policy updates in terms of inter-
mediate middlebox types avoids policy violations during
policy churn. To avoid the violations discussed in the
previous section, we specify the middlebox sequence for
policy version 2 as firewall’ followed by load balancer’.
firewall’ and load balancer’ are new middlebox types
temporarily used during the policy transition period.
Although functionally identical to the original middle-
box types firewall and load balancer, these intermediate
middlebox types have separate instances, as shown in
Figure 12. Frames forwarded under policy version 2
traverse these separate middlebox instances. Hence, a
pswitch will never confuse these frames with those for-
warded under policy 1, i.e., a frame emitted by L is
identified with policy version 1, and a frame emitted
by L′ is identified with policy version 2. This prevents
incorrect forwarding that leads to policy violations. In
order to avoid dropping in-flight frames forwarded under
policy version 1, rules corresponding to policy version
1, except the one matching new packets entering the
data center, are preserved during the policy transition
period, as shown in the rule table of Figure 12.

Figure 12: Using intermediate middlebox types to avoid
policy violation.

Specifying a policy update in terms of intermediate
middlebox types requires a spare instance of each mid-
dlebox type affected by the update to be available dur-
ing the policy transition period. These middlebox in-
stances are required only until all frames in flight prior
to the policy transition have reached their final destina-
tions, i.e., they are not under processing inside a mid-
dlebox 4. After this, the new policy can be re-expressed

4We assume that a middlebox processes a frame in a bounded
amount of time.
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using the original middlebox types firewall and load bal-
ancer. This is equivalent to adding new middlebox in-
stances of the intermediate middlebox type, a middle-
box churn scenario that can drop frames, as discussed
in the next section.

Performing policy updates during off-peak traf-
fic hours reduces the network availability impact of
dropped frames. Obtaining instances of intermediate
middlebox types is also easier. In our example, a second
load balancer instance of type load balancer, L2, can be
slowly drained of traffic associated with policy version
1, and then reclassified as type load balancer’. In order
to avoid disturbing flows unrelated to the policy update
that traverse the same load balancer instances, reclas-
sification is flagged such that it applies only to policies
affected by the update.

Using intermediate middlebox types only ensures that
a particular frame in a flow is not forwarded in a manner
that violates policy. It does not ensure that all frames
in a flow will be forwarded based on the same policy
version. For example, frames entering the data center
before pswitch P ’s transition from policy version 1 to 2
will traverse the middlebox sequence specified by pol-
icy version 1, while frames arriving after the transition
traverse the sequence specified by policy version 2.

If we require all frames in a flow to be forwarded
based on the same policy version, we use per-flow state
in pswitches, as described in Section 5.3. Intermediate
middlebox types are still required when per-flow state
is used, in order to prevent policy violations when state
expires. However, the policy transition period will be
longer when per-flow state is used. This is because the
new policy should be re-expressed based on the orig-
inal middlebox types only after all per-flow state cre-
ated based on the original policy has expired. Other-
wise, policy violations are possible when per-flow state
is recalculated on state expiration at some intermediate
pswitch along the flow’s path.

Intermediate middlebox types and spare middlebox
instances are not required for non-conflicting updates –
e.g., updates that deal with a new traffic type or con-
tain only new middlebox types. If middlebox traversal
inconsistencies during the infrequent and pre-planned
policy transition periods are acceptable, then the loose
synchronization provided by the policy dissemination
mechanisms will alone suffice.

6.3 Middlebox Churn

Middlebox churn, i.e., the failure of existing middlebox
instances or the addition of new ones, will never cause a
policy violation as frames are explicitly forwarded based
on policy. However, it affects network availability as
some frames may be dropped in certain churn scenarios.

The consistent hashing based middlebox instance se-
lection mechanism (Section 5.2) ensures that the same

middlebox instances are selected for all frames in a flow,
when no new middlebox instances are added. When a
running middlebox instance fails, all flows served by it
are automatically shifted to an active standby, if avail-
able, or are shifted to some other instance determined
by consistent hashing. If flows are shifted to a middle-
box instance that does not have state about the flow,
it may be dropped, thus affecting availability. However,
this is unavoidable even in existing network infrastruc-
tures and is not a limitation of the PLayer.

Adding a new middlebox instance changes the num-
ber of instances (n) serving as targets for consistent
hashing. As a result, 1

2n of the flows are shifted to the
newly added instance, on average. Stateful middlebox
instances like firewalls may drop the reassigned flow and
briefly impede network availability. If n is large (say 5),
only a small fraction of flows (10%) are affected. If these
relatively small and infrequent pre-planned disruptions
are deemed significant for the data center, they can be
avoided by enhancing pswitches with per-flow state as
described in Section 5.3.

A stateful pswitch uses the next hop entry recorded
in the FwdTable for all frames of the flow, thus pin-
ning them to the middlebox instance selected for the
first frame. However, this mechanism will not work in
scenarios when a new middlebox instance is added at
around the same time as one of the following two events:
(i) The next hop entry of an active flow is flushed out,
(ii) A switch/router failure reroutes packets of the flow
to a new pswitch which does not have state for the flow.

Figure 13: Inconsistent middlebox information at
pswitches due to network churn.

Network churn concurrent with middlebox churn may
lead to differing middlebox status information at differ-
ent pswitches, as shown in Figure 13. Pswitch P did not
receive the information that firewall instance F2 has be-
come alive because the middlebox controller could not
reach P due to a network partition. Thus pswitch P
selects the firewall instance F1 for all frames entering
the data center. For the reverse flow direction (web
server → external client), pswitch Q selects the firewall
instance F2 for approximately half of the flows. F2 will
drop these frames as it did not process the correspond-
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ing frames in the forward flow direction and hence lacks
the required state. Although this inconsistency in mid-
dlebox information does not cause policy violations, we
can reduce the number of dropped frames by employing
a 2-stage middlebox information dissemination mech-
anism similar to the policy dissemination mechanism
described in Section 6.2.1 – Middlebox status updates
are versioned and a pswitch adopts the latest version on
receiving a signal from the middlebox controller or on
receiving a frame with an embedded middlebox status
version number greater than its current version.

7 Implementation and Evalua-

tion

In this section we briefly describe our prototype imple-
mentation of the PLayer and subsequently demonstrate
its functionality and flexibility under different network
scenarios, as well as provide preliminary performance
benchmarks.

7.1 Implementation

We have prototyped pswitches in software using
Click [28]. An unmodified Click Etherswitch element
formed the Switch Core, while the Policy Core (Click
elements) was implemented in 5500 lines of C++. Each
interface of the Policy Core plugs into the correspond-
ing interface of the Etherswitch element, maintaining
the modular switch design described in Section 4.

Due to our inability to procure expensive hardware
middleboxes for testing, we used the following commer-
cial quality software middleboxes running on standard
Linux PCs:

1. Netfilter/iptables [16] based firewall

2. Bro [32] intrusion detection system

3. BalanceNG [2] load balancer.

We used the Net-SNMP [10] package for implement-
ing SNMP-based middlebox liveness monitoring. In-
stead of inventing a custom policy language, we lever-
aged the flexibility of XML to express policies in a sim-
ple human-readable format. The middlebox controller,
policy controller, and web-based configuration GUI were
implemented using Ruby-On-Rails [15].

7.2 Validation of Functionality

We validated the functionality and flexibility of the
PLayer using computers on the DETER [20] testbed,
connected together as shown in Figure 14. The physical
topology was constrained by the maximum number of
Ethernet interfaces (4) available on individual testbed

computers. Using simple policy changes to the PLayer,
we implemented the different logical network topologies
shown in Figure 15, without rewiring the physical topol-
ogy or taking the system offline. Not all devices were
used in every logical topology.

P S w i t c h  1 P S w i t c h  4P S w i t c h  3P S w i t c h  2

F i r e w a l l  1 F i r e w a l l  2 L o a d  B a l a n c e r

C l i e n t

W e b  S e r v e r  1

W e b  S e r v e r  2

Figure 14: Physical topology on the DETER testbed
for functionality validation.

Topology A→B: Logical topology A represents our
starting point and the most basic topology – a client
directly communicates with a web server. By configur-
ing the policy [Client, (*,IPweb1,*,80,tcp)] → firewall at
the policy controller, we implemented logical topology
B, in which a firewall is inserted in between the client
and the web server. We validated that all client-web
server traffic flowed through the firewall by monitoring
the links. We also observed that all flows were dropped
when the firewall failed (was turned off).
Topology B→C: Adding a second firewall, Firewall 2,
in parallel with Firewall 1, in order to split the pro-
cessing load resulted in logical topology C. Implement-
ing logical topology C required no policy changes. The
new firewall instance was simply registered at the mid-
dlebox controller, which then immediately informed all
four pswitches. Approximately half of the existing flows
shifted from Firewall 1 to Firewall 2 upon its introduc-
tion. However, no flows were dropped as the filtering
rules at Firewall 2 were configured to temporarily al-
low the pre-existing flows. Configuring firewall filtering
behavior is orthogonal to PLayer configuration.
Topology C→B→C: To validate the correctness of
PLayer operations when middleboxes fail, we took down
one of the forwarding interfaces of Firewall 1, thus re-
verting to logical topology B. The SNMP daemon de-
tected the failure on Firewall 1 in under 3 seconds and
immediately reported it to all pswitches via the mid-
dlebox controller. All existing and new flows shifted to
Firewall 2 as soon as the failure report was received.
After Firewall 1 was brought back alive, the pswitches
restarted balancing traffic across the two firewall in-
stances in under 3 seconds.
Topology C→D: We next inserted a load balancer in
between the firewalls and web server 1, and added a
second web server, yielding logical topology D. Clients
send HTTP packets to the load balancer’s IP address
IPLB , instead of a web server IP address (as required
by the load balancer operation mode). The load bal-
ancer rewrites the destination IP address to that of one
of the web servers, selected in a round-robin fashion. To

14



Figure 15: Logical topologies used to demonstrate
PLayer functionality.

implement this logical topology, we specified the policy
[Client, (*,IPLB ,*,80,tcp)] → firewall and the corre-
sponding reverse policy for the client-load balancer seg-
ment of the path. The load balancer, which automati-
cally forwards packets to a web server instance, is not
explicitly listed in the middlebox sequence because it is
the end point to which packets are addressed. We also
specified the policy [Web, (IPweb1/2,*,80,*,tcp)]→load
balancer. This policy enabled us to force the web
servers’ response traffic to pass through the load bal-
ancer without reconfiguring the default IP gateway on
the web servers, as done in current best practices. We
verified that the client-web server traffic was balanced
across the two firewalls and the two web servers. We
also verified the correctness of PLayer operations under

firewall, load balancer and web server failure.
Topology D→E: In order to demonstrate the PLayer ’s
flexibility, we flipped the order of the firewalls and the
load balancer in logical topology D, yielding topology E.
Implementing this change simply involves updating the
policies to [LB, (*,IPweb1/2,*,80,tcp)] → firewall and
[Web, (IPweb1/2,*,80,*,tcp)] → firewall, load balancer.
We do not specify a policy to include the load balancer
on the client to web server path, as the HTTP packets
sent by the client are addressed to the load balancer, as
before.
Topology E→F: To further demonstrate the PLayer’s
flexibility, we updated the policies to implement logical
topology F, in which Firewall 1 solely serves web server 1
and Firewall 2 solely serves web server 2. This topology
is relevant when the load balancer intelligently redirects
different types of content requests (for example, static
versus dynamic) to different web servers, thus requiring
different types of protection from the firewalls. To im-
plement this topology, we changed the middlebox type
of Firewall 2 to a new type firewall2, at the middlebox
controller. We then updated the forward direction poli-
cies to [LB, (*,IPweb1,*,80,tcp)] → firewall and [LB,
(*,IPweb2,*,80,tcp)] → firewall2, and modified the re-
verse policies accordingly.

Although the experiments described above are lim-
ited to simple logical topologies and policies on a small
testbed, the logical topology modifications and failure
scenarios studied here are orthogonal to the complexity
of the system. We further validated the functionality
and correctness of the PLayer in a larger and more com-
plex network topology similar to the popular data center
topology shown in Figure 1. Due to the limited number
of physical network interfaces on our test computers, we
emulated the desired layer-2 topology using UDP tun-
nels. We created tap [36] interfaces on each computer
to represent virtual layer-2 interfaces, with their own
virtual MAC and IP addresses. The frames sent by an
unmodified application to a virtual IP address reaches
the host computer’s tap interface, from where it is tun-
nelled over UDP to the pswitch to which the host is con-
nected in the virtual layer-2 topology. Similarly, frames
sent to a computer from its virtual pswitch are passed
on to unmodified applications through the tap interface.
Pswitches are also inter-connected using UDP tunnels.

For a more formal analysis of PLayer functionality
and properties, please see Section 8.

7.3 Benchmarks

In this section, we provide preliminary throughput
and latency benchmarks for our prototype pswitch im-
plementation, relative to standard software Ethernet
switches and on-path middlebox deployment. Our ini-
tial implementation focused on feasibility and function-
ality, rather than optimized performance. While the
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performance of a software pswitch may be improved
by code optimization, achieving line speeds is unlikely.
Inspired by the 50x speedup obtained when moving
from a software to hardware switch prototype in [23],
we plan to prototype pswitches on the NetFPGA [11]
boards. We believe that the hardware pswitch im-
plementation will have sufficient switching bandwidth
to support frames traversing the switch multiple times
due to middleboxes and will be able to operate at line
speeds.

Figure 16: Topologies used in benchmarking pswitch
performance.

Our prototype pswitch achieved 82% of the TCP
throughput of a regular software Ethernet switch, with
a 16% increase in latency. Figure 16(a) shows the sim-
ple topology used in this comparison experiment, with
each component instantiated on a separate 3GHz Linux
PC. We used nuttcp [12] and ping for measuring TCP
throughput and latency, respectively. The pswitch and
the standalone Click Etherswitch, devoid of any pswitch
functionality, saturated their PC CPUs at throughputs
of 750 Mbps and 912 Mbps, respectively, incurring la-
tencies of 0.3 ms and 0.25 ms.

A middlebox deployment using our prototype pswitch
achieved only 40% of the throughput of a traditional on-
path middlebox deployment, while doubling the latency.
Figure 16(b) shows the simple topology used in this
comparison experiment. The on-path firewall deploy-
ment achieved an end-to-end throughput of 932 Mbps
and a latency of 0.3 ms, while the pswitch-based fire-
wall deployment achieved 350 Mbps with a latency of
0.6 ms. Although latency doubled as a result of mul-
tiple pswitch traversals, the sub-millisecond latency in-
crease is in general much smaller than wide-area In-
ternet latencies. The throughput decrease is a result
of packets traversing the pswitch CPU twice, although
they arrived on different pswitch ports. Hardware-based
pswitches with dedicated multi-gigabit switching fabrics
should not suffer this throughput drop.

Microbenchmarking showed that a pswitch takes be-
tween 1300 and 7000 CPU ticks 5 to process a frame,

5We counted the CPU ticks consumed by different pswitch op-
erations using the RDTSC x86 instruction on a 3GHz desktop PC
running Linux in single processor mode (3000 ticks = 1 microsec-
ond). Due to variability in CPU tick count caused by other pro-

based on its destination. A frame entering a pswitch
input port from a middlebox or server is processed and
emitted out of the appropriate pswitch output ports in
6997 CPU ticks. Approximately 50% of the time is
spent in rule lookup (from a 25 policy database) and
middlebox instance selection, and 44% on frame encap-
sulation. Overheads of packet classification and packet
handoff between different Click elements consumed the
remaining inP processing time. An encapsulated frame
reaching the pswitch directly attached to its destination
server/middlebox was decapsulated and emitted out to
the server/middlebox in 1312 CPU ticks.

8 Formal Analysis

In this section, we validate the functionality of the
PLayer and discuss its limitations using a formal model
of policies and pswitch forwarding operations.

8.1 Model

Network administrators require different types of traffic
to go through different sequences of middleboxes. These
requirements can be expressed as a set of policies, of the
form:

Traffic Type i : Mi1 , Mi2 , . . . , Mij
, . . . , Mini

, F

where Mij
is a middlebox type (say, firewall), F denotes

the final destination, and ni is the number of middle-
boxes to be traversed by traffic type i. Note that F is
only a place-holder for the final destination; the final
destination of a frame is determined by its destination
MAC and/or IP addresses.

The PLayer uses 5-tuple based classification as a sim-
ple and fast mechanism to identify traffic types. Thus,
PLayer policies are of the form:

(Si, Ci) : Mi1 , Mi2 , . . . , Mij
, . . . , Mini

, F

where Ci is the Traffic Selector, a 5-tuple based classifier
that identifies traffic type i, and Si is the Start Location,
denoting where the frame arrived from (e.g., a border
router or an internal server).

5-tuple based traffic type identification is affected
by middleboxes that modify packet headers. Hence, a
PLayer policy for traffic type i that includes such mid-
dleboxes is expressed as a sequence of per-segment poli-

cesses running on the PC, we report the minimum CPU tick count
recorded in our repeated experiment runs as an upper bound on
the CPU ticks consumed by pswitch operations.
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cies, as shown below:

(Si, Ci1) : Mi1 , . . . , Mik1

(Mik1
, Ci2) : Mik1+1

, Mik1+2
, . . . , Mik2

· · ·

(Miks−1
, Cis) : Miks−1+1

, Miks−1+2
, . . . , Miks

(Miks
, Ci(s+1)) : Miks+1

, Miks+2
, . . . , Mini

, F

where Mik1
. . . Miks

are the middlebox types that mod-
ify packet headers, and (Mikj−1

, Cij) matches packets

modified by middlebox type Mikj−1
.

Each per-segment policy is converted into a series of
forwarding rules stored in rule-tables at each pswitch.
A forwarding rule specifies the next hop for a packet
arriving from a particular previous hop that matches
a particular classifier. For example, the per-segment
policy with classifier Ci1 above results in the following
forwarding rules:

Si, Ci1 : Mi1

Mi1 , Ci1 : Mi2

· · ·

Mik1−1
, Ci1 : Mik1

The path taken by a frame f is denoted by

path(f) = e1, e2, . . . , ei, . . . , el, F/D

where entities e1 . . . el are middlebox instances. F/D
denotes that the frame reached its final destination (F )
or was dropped (D).

Each middlebox type Mi has Ti instances
mi1, mi2, . . . , miTi

. For example, path(f) =
m22, m13, F implies that frame f traversed the in-
stance 2 of middlebox type M2, instance 3 of M1, and
then reached its final destination. path(f) = m22, D
implies that it got dropped before reaching its final
destination. The drop may have been the result of
m22’s functionality (e.g., firewalling) or because of lack
of network connectivity or non-availability of active
middlebox instances. We do not consider frame drops
caused by middlebox functionality in this analysis.

Pswitches dictate the path taken by a frame. When a
pswitch receives a frame from a middlebox or server, it
looks up the forwarding rule that best matches it. Based
on the forwarding rule, it forwards it to an instance of
the specified middlebox type or to the final destination,
or drops it. This operation can be represented as fol-
lows:

path(f) → path(f).mx

or

path(f) → path(f).F

or

path(f) → path(f).D

where mx is an instance of the middlebox type Mx speci-
fied by the matching forwarding rule. ‘.’ represents path
concatenation.

The previous hop of a frame is identified based on
its source MAC address, the pswitch interface it arrived
on, or its VLAN tag. Any rule lookup mechanism can
be employed, as long as all pswitches employ the same
one, i.e., two pswitches with the identical rule tables
will output the same matching rule for a frame.

A pswitch selects a middlebox instance for a frame
by calculating a flow direction agnostic consistent hash
on its 5-tuple fields that are unmodified by the middle-
box. This information is also included with the policies
and forwarding rules (not shown above for clarity). This
implies that a pswitch will select the same middlebox in-
stance for all frames in the same flow, in either direction.
This also implies that the middlebox instance selection
is independent of the pswitch on which it is done, if all
pswitches have the same middlebox database.

8.2 Desired Properties

Correctness
path(f) = mr1s1

, mr2s2
, . . . , mrlsl

, F is correct , if
mrisi

∈ Mri
, where Mr1

, Mr2
, . . . , Mrl

is the middle-
box sequence associated with frame f ’s traffic type.
path(f) = mr1s1

, mr2s2
, . . . , mrlsl

, D is correct , if
Mr1

, Mr2
, . . . , Mrl

is a (proper or not proper) prefix of
the middlebox sequence associated with f ’s traffic type.
Consistency

path(f) is consistent if for all frames g in the same
flow as f and in the same direction, path(g) = path(f).
Availability

The availability of the PLayer is the fraction of frames

that reach their final destination, i.e., |{f |F∈path(f)}|
|{f}| .

Next, we analyze how well the PLayer satisfies the
above properties under various scenarios, using the
model developed so far.

8.3 Policy Churn

A new policy j conflicts with an existing policy i, if the
following conditions are satisfied:

1. Cix ∩ Cjy 6= φ, and

2. Six = Sjy

where (Six, Cix) and (Sjy , Cjy) are the previous hops
and traffic classifiers associated with the forwarding
rules of policies i and j. The intersection of two clas-
sifiers is the set of all packets that can match both.
For example, the intersection of classifiers srcip =
128.32.0.0/16 and dstport = 80 includes the packet
from 128.32.123.45 destined to port 80. As another ex-
ample, the intersection of classifiers dstport = 80 and
dstport = 443 is empty.
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Conflicting policies, and thus their forwarding rules,
are specified in terms of intermediate middlebox types
M ′

1, M
′
2, . . .. A pswitch will never match an inflight

frame f with path(f) = e1, e2, . . . , ei against a for-
warding rule of the new policy, as the previous hop ei

is an instance of one of the original middlebox types
M1, M2, . . .. In other words, we avoid conflicting policies
by ensuring that the condition Six = Sjy never holds.
If the original policy is no longer present in the pswitch
rule table, then f is dropped. Instances of the original
middlebox types are re-used only after allowing suffi-
cient time for all in-flight packets re-directed under the
original policy to reach their destinations. Thus, cor-
rectness is guaranteed, although availability is reduced.
Note that this correctness guarantee is independent of
the policy dissemination mechanism.

8.4 Addition or Failure of Network

Links

The addition or failure of network links only affects the
ability of a pswitch to forward a frame to its next hop,
and not the selection of the next hop. Thus, the path of
a frame may get truncated, but correctness and consis-
tency are unaffected. The availability lost due to frames
not reaching their final destination is attributable to the
underlying forwarding mechanisms used by the PLayer
and not to the PLayer itself.

8.5 Inaccuracies in Classifier or Previ-

ous Hop Identification

Correctness of PLayer operations critically depends on
accurate traffic classification (i.e., well-defined Cis) and
previous hop identification (i.e., accurate detection of
Sis). Please see Section 9 for more details on how the
PLayer addresses the limitations caused by inaccuracies
in these.

8.6 Middlebox Churn

The addition of a new middlebox type does not affect
forwarding rule lookup, middlebox instance selection
or packet forwarding. The PLayer allows a middlebox
type to be deleted only after all policies including it are
deleted. Hence correctness, consistency and availability
are unaffected by the addition or deletion of a middle-
box type.

The planned removal or failure of an instance of a
particular middlebox type affects only the middlebox
instance selection operation of a pswitch. Flows whose
frame 5-tuples hashed to the removed middlebox in-
stance will now be shifted to a different instance of
the same middlebox type, or dropped if no instance is
available. Thus consistency and availability are ham-
pered. However, this is inevitable even in today’s mech-

anisms6.The addition of a new middlebox instance also
impacts the middlebox instance selection process only.
Some flows will now hash to the new instance and
thus get shifted there. This again impacts consistency
and availability (because stateful middleboxes may drop
these packets), but correctness is preserved. We assume
that, in the worst case, a middlebox receiving an unex-
pected frame in the middle of a flow simply drops it and
does not violate any middlebox functionality.

8.7 Forwarding Loops

The PLayer cannot prevent forwarding loops caused by
the underlying forwarding mechanism it uses. However,
it does not introduce any forwarding loops of its own.
We assume that policies themselves do not dictate for-
warding loops. Static analysis of the policy definitions
can detect and prevent such policies. A pswitch explic-
itly redirects only those frames received from a mid-
dlebox or a server. The path(f) of a frame increases
and progresses towards its final destination, each time
a pswitch redirects it. It will never get stuck in a for-
warding loop between two pswitches. We assume that
pswitches can accurately identify its interfaces that are
connected to other pswitches. Since such identification
is crucial to existing forwarding mechanisms (like span-
ning tree construction), automated and manual meth-
ods already exist for this purpose.

9 Limitations

The following are the main limitations of the PLayer:

1. Indirect Paths

Similar to some existing VLAN-based middlebox
deployment mechanisms, redirecting frames to off-
path middleboxes causes them to follow paths that
are less efficient than direct paths formed by mid-
dleboxes physically placed in sequence. We believe
that the bandwidth overhead and slight latency in-
crease are insignificant in a bandwidth-rich low la-
tency data center network.

2. Policy Specification

Traffic classification and policy specification using
frame 5-tuples is not trivial. However, it is sim-
pler than the current ad-hoc middlebox deploy-
ment best practices. Network administrators spec-
ify policies using a configuration GUI at the central-
ized policy controller. Static policy analysis flags
policy inconsistencies and misconfiguration (e.g.,

6Active standby middlebox instances can be used, if available.
Although consistency as defined here is violated, in practice the
packets do not get dropped.
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policy loops), and policy holes (e.g., absence of pol-
icy for SSH traffic). Since every pswitch has the
same policy set, policy specification is also less com-
plex than configuring a distributed firewall system.

3. Incorrect Packet Classification

5-tuples alone may be insufficient to distinguish dif-
ferent types of traffic if it is obfuscated or uses un-
expected transport ports. For example, a pswitch
cannot identify HTTPS traffic unexpectedly sent to
port 80 instead of 443, and forward it to an SSL of-
fload box. Since such unexpected traffic is likely to
be dropped by the destinations themselves, classifi-
cation inaccuracy is not a show-stopper. However,
it implies that if deep packet inspection capable
firewalls are available, then policies must be defined
to forward all traffic to them, rather than allowing
traffic to skip firewalls based on their 5-tuples.

4. Incorrectly Wired Middleboxes

The PLayer requires middleboxes to be correctly
wired for accurate previous hop identification and
next hop forwarding. For example, if a firewall is
plugged into pswitch interface 5 while the pswitch
thinks that an intrusion prevention box is plugged
in there, then frames emitted to the intrusion pre-
vention box will reach the firewall. Even existing
middlebox deployment mechanisms critically rely
on middleboxes being correctly wired. Since mid-
dleboxes are few in number compared to servers,
we expect them to be carefully wired.

5. Unsupported Policies

The PLayer does not support policies that require
traffic to traverse the same type of middlebox mul-
tiple times (e.g., [Core Router, (*,*,*,80,tcp)] →

firewall, load balancer, firewall). The previous hop
determination mechanism used by pswitches can-
not distinguish the two firewalls. We believe that
such policies are rare, and hence tradeoff complete
policy expressivity for simplicity of design. Note
that policies involving different firewall types (e.g.,
[Core Router, (*,*,*,80,tcp)] → external firewall,
loadbalancer, internal firewall) are supported.

6. More Complex Switches

While we believe that the economical implementa-
tion of pswitches is easily possible given the current
state of the art in network equipment, pswitches are
more complex than regular Ethernet switches.

10 Related Work

Indirection is a well-known principle in computer net-
working. The Internet Indirection Infrastructure [34]

and the Delegation Oriented Architecture [37] provide
layer-3 and above mechanisms that enable packets to be
explicitly redirected through middleboxes located any-
where on the Internet. Due to pre-dominantly layer-2
topologies within data centers, the policy-aware switch-
ing layer is optimized to use indirection at layer-2. Sel-
Net [26] is a general-purpose network architecture that
provides indirection support at layer ‘2.5’. In SelNet,
endhosts implement a multi-hop address resolution pro-
tocol that establishes per flow next-hop forwarding state
at middleboxes. The endhost and middlebox modifica-
tions required make SelNet impractical for current data
centers. Using per-flow multi-hop address resolution to
determine the middleboxes to be imposed is slow and in-
efficient, especially in a data center environment where
policies are apriori known. The PLayer does not re-
quire endhost or middlebox modifications. A pswitch
can quickly determine the middleboxes to be traversed
by the packets in a flow without performing multi-hop
address resolution.

Separating policy from reachability and centralized
management of networks are goals our work shares with
many existing proposals like 4D [27] and Ethane [23].
4D concentrates on general network management and
does not provide mechanisms to impose off-path mid-
dleboxes or to guarantee middlebox traversal. In-
stantiations of 4D like the Routing Control Platform
(RCP) [21] focus on reducing the complexity of iBGP
inside an AS and not on Data Centers. 4D specifies that
forwarding tables should be calculated centrally and
sent to switches. The policy-aware switching layer does
not mandate centralized computation of the forwarding
table – it works with existing network path selection
protocols running at switches and routers, whether cen-
tralized or distributed.

Predicate routing[33] declaratively specifies network
state as a set of boolean expressions dictating the pack-
ets that can appear on various links connecting together
end nodes and routers. Although this approach can be
used to impose middleboxes, it implicitly buries mid-
dlebox traversal policies in a set of boolean expressions,
as well as requires major changes to existing forwarding
mechanisms.

Ethane [23] is a proposal for centralized management
and security of enterprise networks. An Ethane switch
forwards the first packet of a flow to a centralized do-
main controller. This controller calculates the path to
be taken by the flow, installs per-flow forwarding state
at the Ethane switches on the calculated path and then
responds with an encrypted source route that is enforced
at each switch. Although not a focus for Ethane, off-
path middleboxes can be imposed by including them
in the source routes. In the PLayer, each pswitch in-
dividually determines the next hop of a packet without
contacting a centralized controller, and immediately for-
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wards packets without waiting for flow state to be in-
stalled at pswitches on the packet path. Ethane has
been shown to scale well for large enterprise networks
(20000 hosts and 10000 new flows/second). However,
even if client authentication and encryption are dis-
abled, centrally handing out and installing source routes
in multiple switches at the start of each flow may not
scale to large data centers with hundreds of switches,
serving 100s of thousands of simultaneous flows7. The
distributed approach taken by the PLayer makes it bet-
ter suited for scaling to a large number of flows. For
short flows (like single packet heartbeat messages or 2-
packet DNS query/response pairs), Ethane’s signaling
and flow setup overhead can be longer than the flow it-
self. The prevalence of short flows [38] and single packet
DoS attacks hinder the scalability of the flow tables in
Ethane switches. Although Ethane’s centralized con-
troller can be replicated for fault-tolerance, it consti-
tutes one more component on the critical path of all
new flows, thereby increasing complexity and chances
of failure. The PLayer operates unhindered under the
current policies even if the policy controller fails.

Some high-end switches like the Cisco Catalyst
6500 [5] allow various middleboxes to be plugged into
the switch chassis. Through appropriate VLAN con-
figurations on switches and IP gateway settings on end
servers, these switches offer limited and indirect control
over the middlebox sequence traversed by traffic. Mid-
dlebox traversal in the PLayer is explicitly controlled
by policies configured at a central location, rather than
implicitly dictated by complex configuration settings
spread across different switches and end servers. Crucial
middleboxes like firewalls plugged into a high-end switch
may be bypassed if traffic is routed around it during fail-
ures. Unlike the PLayer, only specially designed mid-
dleboxes can be plugged into the switch chassis. Con-
centrating all middleboxes in a single (or redundant)
switch chassis creates a central point of failure. Increas-
ing the number of middleboxes once all chassis slots are
filled up is difficult.

MPLS traffic engineering capabilities can be over-
loaded to force packets through network paths with mid-
dleboxes. This approach not only suffers from the draw-
backs of on-path middlebox placement discussed earlier,
but also requires middleboxes to be modified to relay
MPLS labels.

Policy Based Routing (PBR) [14], a feature present
in some routers, enables packets matching pre-specified
policies to be assigned different QoS treatment or to
be forwarded out through specified interfaces. Al-
though PBR provides no direct mechanism to im-

7We estimate that Google receives over 400k search queries per
second, assuming 80% of search traffic is concentrated in 50 peak
hours a week [17]. Multiple flows from each search query and from
other services like GMail are likely to result in each Google data
center serving 100s of thousands of new flows/second.

pose middleboxes, it can be used along with standard
BGP/IGP routing and tunneling to impose middle-
boxes. dFence [30], a DoS mitigation system which
on-demand imposes DoS mitigation middleboxes on the
data path to servers under DOS attack, uses this ap-
proach. The PLayer does not rely on configurations
spread across different routing and tunneling mecha-
nisms. It instead provides a simple and direct layer-2
mechanism to impose middleboxes on the data path. A
layer-2 mechanism is more suitable for imposing mid-
dleboxes in a data center, as data centers are pre-
dominantly layer-2 and many middleboxes cannot even
be addressed at the IP layer.

11 Discussion

11.1 Clean-slate Design

A clean-slate redesign of the data center network will
allow us to support middleboxes more easily and ele-
gantly. The main requirement of a clean-slate redesign
is the ability to modify middleboxes. The sequence of
middleboxes to be traversed by a frame can be embed-
ded within it if we can modify middleboxes to propagate
an opaque token associated with a frame received on its
input interface all the way across middlebox process-
ing, till the frame is emitted from the output interface.
Since the middlebox sequence to be traversed by a frame
can now be permanently embedded in it, guaranteeing
middlebox traversal under policy churn becomes triv-
ial. Multiple policy/rule lookups for a frame during its
journey through the data center are also avoided. The
desired middlebox modification is very similar to that
required by tracing frameworks like X-trace [25]. The
authors in X-trace have integrated propagation of an
opaque identifier (the X-trace id in this case) into the
TCP/IP processing stack as well as popular libraries
like libasync. We hope to leverage their work as part of
future work on a clean-slate data center network imple-
mentation with middlebox support.

11.2 Stateless versus Stateful pswitches

A stateful pswitch offers the following two advantages
over a stateless pswitch:

1. Faster next hop determination.

A stateful pswitch can determine the next hop of
a frame faster than a stateless pswitch. This is be-
cause a stateful pswitch performs an exact match
hash lookup on the FwdTable as against the pat-
tern based rule lookup and subsequent middlebox
instance selection performed by a stateless pswitch,
on receiving each packet.
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2. Higher middlebox instance selection consis-
tency

A stateful pswitch provides more consistent mid-
dlebox instance selection than stateless pswitches
when new instances of an existing middlebox type
are added to the network. In a stateless pswitch,
a middlebox instance is selected using consistent
hashing on a frame’s 5-tuple. As described in Sec-
tion 6.3, when a new middlebox instance is added,
a small fraction of existing flows may be shifted to
the new instance. Stateful middlebox instances like
firewalls may drop reassigned flows and thus briefly
impede network availability. A stateful pswitch
avoids this flow reassignment by using next hop in-
formation recorded in the FwdTable to pin a flow
to a particular middlebox instance. However, this
does not work under the race conditions described
in Section 6.3.

The main disadvantages of a stateful pswitch are its
large fast memory requirements and the associated state
management complexity. We conservatively estimate
that 140MB of fast memory is needed for 1 million flows
traversing at most two middleboxes in either direction,
assuming each next hop entry to consume 24 bytes (13
bytes for 5-tuple + 4 bytes to identify previous hop + 4
bytes to identify next hop + 1 byte for TTL + rest for
hash overhead).

12 Conclusion

The recent rapid growth in the number, importance,
scale and complexity of data centers and their very low
latency, high bandwidth network infrastructures open
up challenging avenues of research. In this report, we
proposed the PLayer, a new way to deploy middleboxes
in data centers. The PLayer leverages the very low
latency, high bandwidth data center network environ-
ment that is conducive for indirection to explicitly redi-
rect traffic to unmodified off-path middleboxes specified
by policy. Unlike current best practices, our approach
guarantees middlebox traversal under all network condi-
tions and enables more efficient and flexible data center
network topologies. We demonstrated the functional-
ity and feasibility of our proposal through a software
prototype deployed on a small testbed.

Appendix

A Pswitch frame processing

In this appendix, we provide a detailed description of
how stateless and stateful pswitches process frames.

A.1 Stateless Pswitch

A.1.1 inP

The inP module associated with a pswitch interface X
redirects incoming frames to appropriate middleboxes
based on policy. Non-IP frames like ARP are ignored
by the inP module and pushed out to Switch Core in-
terface X unmodified for regular Ethernet forwarding.
In order to avoid forwarding loops, an inP module does
not lookup policy and redirect frames that have already
been redirected by another inP module. Such frames,
identified by the presence of encapsulation, are emitted
unmodified to Switch Core interface X.

Algorithm 1 lists the processing steps performed by
the inP module when a frame f arrives at pswitch in-
terface X. The following are the two main steps:
Step 1: Match rule: The inP module looks up the
rule matching f from the RuleTable. f is discarded
if no matching rule is found.
Step 2: Determine next hop: A successful rule
match yields the middlebox or server to which f is to
be forwarded next. If the Next Hop of the matching rule
specifies FinalDestination, then the server identified by
f ’s destination MAC address is the next hop. If the
Next Hop field lists multiple instances of a middlebox,
then the inP chooses a particular instance for the flow
associated with f , by using flow direction agnostic con-
sistent hashing on f ’s 5-tuple fields hinted by the policy
(refer Section 5.3).

Algorithm 1 inP processing in a stateless pswitch.
1: procedure inPProcess.Stateless(interface X, frame f)
2: if f is not an IP frame then

3: Forward f to Switch Core interface X
4: return
5: end if

6: if f is encapsulated then

7: Forward f to Switch Core interface X
8: return
9: end if

10: prvMbox = GetPrvHop(f)
11: rule = RuleTable.LookUp(prvMbox, f)
12: if rule != nil then

13: if rule.nxtHop != FinalDestination then

14: nxtMboxInst = ChooseInst(rule.nxtHopInsts, f)
15: encF = Encap(f, prvMbox.MAC, nxtMboxInst.MAC)
16: Forward encF to Switch Core interface X
17: else

18: encF = Encap(f, prvMbox.MAC, f.dstMAC)
19: Forward encFrame to Switch Core interface X
20: end if

21: else

22: Drop f
23: end if

24: end procedure
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A.1.2 outP

The outP module of pswitch interface X receives the
frames emitted by Switch Core interface X before they
exit the pswitch. These frames will be in encapsulated
form, having been processed by an inP module at the
same or a different pswitch prior to entering the Switch
Core. If pswitch interface X is connected to another
pswitch and not to a server/middlebox, then the outP

module emits out the frame unmodified through pswitch
interface X. If pswitch interface X is connected to a
server/middlebox, and the destination MAC address of
the received encapsulated frame does not match the
MAC address of the server/middlebox, then the frame
is dropped to avoid undesirable behavior from confused
servers/middleboxes. For example, a firewall may ter-
minate a flow by sending a TCP RST if it receives an
unexpected frame. If the destination MAC address of
the encapsulated frame matches the MAC address of the
connected server/middlebox, then the frame is decapsu-
lated and emitted out through pswitch interface X. The
server/middlebox receives a regular Ethernet II frame
and appropriately processes it.

Algorithm 2 lists the processing steps performed by
the outP module when it receives a frame f emitted
by the Switch Core interface X.

Algorithm 2 outP processing in a stateless pswitch.
1: procedure outPProcess.Stateless(interface X, frame f)
2: if interface X is not connected to a server/middlebox then

3: Emit f out of pswitch interface X
4: else

5: connMAC = MAC of connected server/middlebox
6: if f.dstMAC != connMAC then

7: Drop f
8: else

9: decapF = Decapsulate(f)
10: Emit frame decapF out of pswitch interface X
11: end if

12: end if

13: end procedure

An outP module can detect whether a middlebox
instance connected to it is dead or alive, using informa-
tion from the FailDetect module. When emitting a
frame to a dead middlebox instance, the outP module
has two options:

1. Drop the frame or,

2. Redirect the frame to a live instance of the same
middlebox type.

The first option of dropping frames destined to dead
middlebox instances keeps our design simple, and is an
apt tradeoff when middlebox failures are rare. The sec-
ond option of redirecting frames to live middlebox in-
stances offers greater resiliency against packet drops.
The pswitch which originally chose the failed middlebox
instance removes it from consideration in the middle-
box instance selection step when the news about failure

eventually reaches it. Since the same selection algorithm
is used at both the original pswitch and at the redirect-
ing pswitch, the same middlebox instance is chosen for
the flow, hence reducing chances of flows that traverse
stateful middleboxes breaking.

Re-selection of middlebox instances and redirection
of frames by the outP module raise the specter of for-
warding loops. For example, let firewall 1 be attached to
pswitch 1 and firewall 2 to pswitch 2. Pswitch 1 detects
that firewall 1 has failed but pswitch 2 does not know
about the failure yet and vice versa. Pswitch 1 redirects
a frame destined to firewall 1 to firewall 2. When the
frame reaches pswitch 2, it is redirected back to firewall
1. This creates a forwarding loop that persists till at
least one of the pswitches hears about the failure of the
firewall connected to the other pswitch. In order to pre-
vent forwarding loops, each redirected frame includes a
redirection TTL that limits the number of times a frame
can be redirected by an outP module.

A.2 Stateful Pswitch

A stateful pswitch addresses some of the limitations of
a stateless pswitch by storing per-flow state in the Nex-

tHopDb. The NextHopDb consists of two tables –
FwdTable and RevTable. The two tables maintain
per-flow state for the forward and reverse direction of
flows, respectively.8 Each table is a hash table with en-
tries of the form ( 5-tuple, Previous hop MAC) → (Next
hop MAC, TTL). Unlike middlebox instance selection,
the entire 5-tuple is always used in table lookup. Since
a frame may traverse a pswitch multiple times during
its journey, the previous hop MAC address is needed to
uniquely identify entries. The TTL field is used to flush
out old entries when the table fills up.

A.2.1 inP Processing

inP processing in the stateful pswitch, listed in Algo-
rithm 3, is similar to that in a stateless pswitch. When
the inP module receives an encapsulated IP frame, it
looks up FwdTable for a next hop entry. This ex-
act match-based lookup is faster than a pattern-based
rule lookup. If a next hop entry is found, the frame is
encapsulated in a frame destined to the MAC address
specified in the entry and sent to the Switch Core. If a
next hop entry is not found, a rule lookup is performed.
If the rule lookup succeeds, the frame is encapsulated
and forwarded to the appropriate server/middlebox as
in stateless inP processing. Additionally in stateful inP

processing, an entry with the MAC address to which
the encapsulated frame is forwarded is added to the
FwdTable. If the rule lookup fails, RevTable is
checked for a next hop entry associated with the flow,

8Forward is defined as the direction of the first packet of a
flow.
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Algorithm 3 inP processing in a stateful pswitch
1: procedure inPProcess.Stateful(interface X, frame f)
2: Processing for non-unicast or non-data frames identical to Al-

gorithm 1.
3: prvMbox = GetPrvHop(f)
4: nh = FwdTable.lookup(f.5tuple, prvMbox.MAC)
5: if nh != nil then

6: encF = Encap(f, prvMbox.MAC, nh.dstMAC)
7: Forward encFrame to Switch Core interface X
8: else

9: rule = RuleTable.LookUp(f)
10: if rule != nil then

11: if rule.nxtHop != FinalDestination then

12: nxtMboxInst = ChooseInst(rule.nxtHopInsts,f)
13: encF = Encap(f, prvMbox.MAC, nxtMbox-

Inst.MAC)
14: Forward encF to Switch Core interface X
15: FwdTable.add([f.5tuple,

prvMbox.MAC]→nxtMboxInst.MAC)
16: else

17: encF = Encap(f, prvMbox.MAC, f.dstMAC)
18: Forward encFrame to Switch Core interface X
19: FwdTable.add([f.5tuple, prvMbox.MAC] →

f.dstMAC)
20: end if

21: else

22: revnh = RevTable.lookup(f.5tuple, prvMbox.MAC)
23: if revnh != nil then

24: encF = Encap(f, prvMbox.MAC, revnh.dstMAC)
25: Forward encFrame to Switch Core interface X
26: FwdTable.add([f.5tuple, prvMbox.MAC] →

revnh.dstMAC)
27: else

28: Error: drop f
29: end if

30: end if

31: end if

32: end procedure

created by some prior frame of the flow in the opposite
direction. If an entry is found, the frame is encapsulated
and forwarded to the destination MAC address specified
by the entry. For faster lookup on subsequent frames of
the same flow, an entry is added to the FwdTable.

A.2.2 outP Processing

outP processing in the stateful Policy Core is identi-
cal to that in the stateless Policy Core except for the
additional processing described here. As listed in Al-
gorithm 4, while processing a frame destined to a di-
rectly attached middlebox/server, a stateful outP mod-
ule adds a next-hop entry to the RevTable. This
entry records the last middlebox instance traversed
by the frame and hence determines the next mid-
dlebox instance to be traversed by frames in the re-
verse flow direction arriving from the middlebox/server.
For example, the next-hop entry for a frame (IPA :
PortA → IPB : PortB) arriving from firewall 1 des-
tined to server B will be (IPB : PortB → IPA :
PortA, prevHop=server B, nextHop=firewall 1 ). The
RevTable next-hop entry is used in inP processing if
both FwdTable and policy lookup fail, and thus pro-
vides a default reverse path for the reverse flow direc-
tion.

The policy lookup in Step 9 of Algorithm 3 provides
the flexibility to explicitly specify a different middlebox

Algorithm 4 outP processing in a stateful pswitch
1: procedure outPProcess.Stateful(interface X, frame f)
2: if interface X is not connected to a server/middlebox then

3: Emit f out of pswitch interface X
4: else

5: connMAC = MAC of connected server/middlebox
6: if f.dstMAC != connMAC then

7: Drop f
8: else

9: decapF = Decapsulate(f)
10: Emit frame decapF out of pswitch interface X
11: prvMbox = GetPrvHop(f)
12: rev5tuple = Reverse(f.5tuple)
13: nh = FwdTable.lookup(rev5tuple, connMAC)
14: if nh == nil then

15: RevTable.add([rev5tuple, connMAC] → prvM-
box.MAC)

16: end if

17: end if

18: end if

19: end procedure

sequence for the reverse flow direction. The RevTable

lookup in Step 22 enables us to skip specifying the policy
for the reverse flow direction. Per-flow state is used
to automatically select the same middlebox instances
in reverse order. Thus, per-flow state simplifies policy
specification. It also avoids expensive policy lookup and
middlebox instance selection operations on every frame
by using the next hop middlebox MAC address recorded
in the FwdTable.
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